

MASTER MABIO

MANAGEMENT DES BIOPRODUCTIONS

Ingénierie des bioprocédés Assurance qualité Management de projet

Service scolarité Aurélie Simonnot aurelie.simonnot@univ-tours.fr

Contacts

Responsable MI Marc Clastre marc.clastre@univ-tours.fr

Responsable M2 Laurence Douziech Eyrolles douziech.eyrolles@univ-tours.fr

CONTENU DE LA FORMATION

Le M2 est proposé: en apprentissage (1 mois / 1 mois) en formation initiale (stage 6 mois)

Master I

Master 2

Ingénierie des bioprocédés

Bases fondamentales en biologie

Outils de l'ingénieur

Introduction aux biotechnologies

Biotechnologies industrielles

Développement de procédés

Transposition industrielle

Analyse des données scientifiques de contrôle

Optimisation de procédés de production

Organisation, planification et suivi des essais

Assurance qualité

Réglementation et qualité des biomédicaments

Management de la qualité, HSE, Gestion des risques

Réglementation des biomédicaments

Management de projet

Gestion de projet et outils d'aide à l'insertion professionnelle

Projet expérimental interdisciplinaire

Anglais

Stage 7 semaines

Management de projet

Projet étudiant

Anglais scientifique

Stage 6 mois ou apprentissage

Le Bio³ Institute, c'est quoi?

Une structure de 2200 m² dédiée à la formation en bioproduction industrielle et au développement de biomolécules Une mini-usine équipée pour la production, la purification et la formulation Des partenariats avec des industries des biotechnologies et des équipes de recherche

LE MASTER I

UE Fondamentaux et compétences transversales

Bases fondamentales en biologie (20h)

- · Biologie moléculaire et cellulaire
- Biochimie
- Microbiologie
- Bio-informatique

Introduction aux biotechnologies (20 h)

- Introduction et histoire
- Génie génétique
- Sciences omiques
- Biologie de synthèse
- Ingénierie métabolique
- Applications bio-industrielles

Gestion de projets et Outils d'aide à l'insertion professionnelle (30 h)

- Suivi et rendu de projet selon le principe de la gestion de projet
- Réalisation d'un projet en groupe

Projet expérimental interdisciplinaire (26 h)

- Diagnostic
- Construction d'une bactérie génétiquement modifiée
- Productions de principe actif
- Veille scientifique, PI et technologique

Anglais (40 h)

UE Outils de l'ingénieur (29h)

- Mathématiques appliquées
- Physique appliquée

UE Réglementation et qualité des biomédicaments (22 h)

- Introduction au contexte économique et industriel
- Cycle de vie des produits de santé
- Propriété industrielle

UE Biotechnologies industrielles (74 h)

- Outils et méthodologies pour l'ingénierie des bioprocédés
- Bilans matière instantanés et calculs cinétiques
- Production de biomasse et de molécules d'intérêt & technologies de bioréacteurs (upstream process)
- Séparation et purification de biomolécules (downstream process)
- Méthodes analytiques pour le suivi de cultures
- Introduction à la formulation
- TP USP (18h bioréacteurs microbiens)
- TP DSP (14h chromatographie centrifugation, filtrations tangentielle et profondeur)

UE Analyse de données de contrôle (30 h)

- Statistiques
- Vérification, correction et validation de données de culture

UE Développement de procédés (62 h)

- Elucidation de voies de synthèse
- Ingénierie métabolique (cellules animales et microorganismes)
- Besoins nutritionnels et développement de milieux de culture
- Le réacteur continu comme outil de recherche
- Opérations unitaires en biotechnologies industrielles & diagrammes en blocs
- Simulation de procédés de culture
- Caractérisation de biomédicaments
- TP Electrophorèse capillaire

UE Transposition industrielle (42 h)

- · Hydrodynamique des réacteurs
- Capteurs en ligne et régulation (PID)
- Fed-batch et cinétiques complexes
- Transfert de matière et d'oxygène
- Transfert thermique et échangeurs
- Diagrammes en flux
- Stratégies et protocoles de montée en échelle
- Projet filière (historique, acteurs clefs, R&D, verrous scientifiques et industriels, procédés industriels, etc)

Stage en entreprise

- Stage minimum de 7 semaines en entreprise (rapport et soutenance)
- Ou : Veille bibliographique sur application industrielle (rapport et soutenance)

LE MASTER 2

UE Bioproductions industrielles

Ingénierie et optimisation des bioprocédés (59 h)

- Optimisation globale des procédés de production (dimensionnement de procédés, analyse de cycle de vie, estimation de coûts de production)
- Impact du procédé sur la qualité de biomédicaments
- Maîtrise et optimisation du Fill & Finish
- Approche Process Analytical Technology et Quality by Design
- TP cellules animales en bioréacteurs

Applications bioindustrielles (32 h)

- Optimisation des Anticorps
- Vaccins
- Médicaments de Thérapie Innovante
- Participation à un congrès

UE Management de la qualité/HSE/Gestion des risques

Management de la qualité/HSE/Gestion des risques (61 h)

- Contrôle de l'application des règles liées à la qualité, l'hygiène, la sécurité, la protection de l'environnement
- Gestion du risque
- Bonnes pratiques de fabrication (BPF)
- Qualification / Validation, ZAC
- Lean management

Réglementation des Biomédicaments (30 h)

- Les différentes institutions
- Référentiels
- Elaboration du dossier d'AMM
- Procédures d'enregistrement
- ICH Q8, Q9, Q10
- Cas des biosimilaires

UE Management de projet

Organisation, planification et suivi des essais (30 h)

- Organisation, planification et suivi de l'avancement des différentes étapes d'un projet de développement et d'optimisation
- Plans d'expérience
- Stratégies de maintenance en industrie

Gestion de projet (51 h)

- Management de projet : méthodologie, étapes, suivi, indicateurs, gestion de budget
- Animation de réunion
- Les différents types de management

Projet étudiant (127 h)

- Réalisation d'un projet de développement autour de la production d'un bioproduit, de la preuve de concept au bioréacteur
- Etude de son potentiel d'industrialisation avec intégration des contraintes industrielles, réglementaires et de marché
- Mise en pratique expérimentale du travail théorique

UE Anglais (30 h)

• Anglais scientifique

Apprentissage

- Le master 2 est proposé en apprentissage en collaboration avec le CFA Leem
- Rythme:

sept. à janv. : I mois / I mois février à août : en entreprise

