

MASTER MABIO

MANAGEMENT DES BIOPRODUCTIONS

Ingénierie des bioprocédés Assurance qualité Management de projet

Service scolarité
Aurélie Simonnot
aurelie.simonnot@univ-tours.fr

Contacts

Responsable MI Marc Clastre marc.clastre@univ-tours.fr

Responsable M2 Laurence Douziech Eyrolles douziech.eyrolles@univ-tours.fr

CONTENU DE LA FORMATION

Le M2 est proposé: en apprentissage (1 mois/1 mois) en formation initiale (stage 6 mois)

Master I

Master 2

Ingénierie des bioprocédés

Bases fondamentales en biologie

Introduction aux biotechnologies

Biotechnologies industrielles

Développement de procédés

Transposition industrielle

Analyse des données scientifiques de contrôle

Optimisation de procédés de production

Organisation, planification et suivi des essais

Assurance qualité

Environnements juridique et réglementaire des industries en biotechnologies

Management de la qualité, HSE, Gestion des risques

Réglementation des biomédicaments

Management de projet

Gestion de projet et outils d'aide à l'insertion professionnelle

Projet expérimental interdisciplinaire

Anglais

Stage 7 semaines

Management de projet

Projet étudiant

Anglais scientifique

Le Bio³ Institute, c'est quoi?

Une structure de 2200 m² dédiée à la formation en bioproduction industrielle et au développement de biomolécules Une mini-usine équipée pour la production, la purification et la formulation Des partenariats avec des industries des biotechnologies et des équipes de recherche

LE MASTER I

Bases fondamentales en biologie (40h)

- Biologie moléculaire et cellulaire
- Biochimie
- Microbiologie
- Immunologie
- Bio-informatique

Introduction aux biotechnologies (20 h)

- Introduction et histoire
- Biotechnologies vertes
- Génie génétique
- Sciences omiques
- Biologie de synthèse
- Applications industrielles

Biotechnologies industrielles (70 h)

- Outils et méthodologies pour l'ingénierie des bioprocédés
- Bilans matière instantanés et calculs cinétiques
- Production de biomasse et de molécules d'intérêt (upstream process)
- Séparation et purification de biomolécules (downstream process)
- Méthodes analytiques pour le suivi de cultures
- TP USP (18h bioréacteurs microbiens)
- TP DSP (14h chromatographie centrifugation, filtrations tangentielle et profondeur)

Développement de procédé (60 h)

- Biologie de synthèse
- Ingénierie métabolique (cellules animales et microorganismes)
- Besoins nutritionnels
- Design et optimisation de milieux de culture
- Modes de conduite de culture
- TP USP (32h bioréacteurs cellules animales, verre et single-use)

Anglais (40 h)

Analyse de données de contrôle (30 h)

- Statistiques
- Vérification et validation de données de culture
- Identification de paramètres critiques

Transposition industrielle (40 h)

- Technologies des bioréacteurs
- Hydrodynamique des réacteurs
- Capteurs en ligne et régulation (PID)
- Transfert de matière
- Transfert thermique et échangeurs
- Stratégies de montée en échelle
- Opérations unitaires en biotechnologies industrielles
- Impact du procédé sur la production des anticorps monoclonaux
- Projet filière (historique, acteurs clefs, R&D, verrous scientifiques et industriels, procédés industriels, etc)

Projet expérimental interdisciplinaire (30 h)

- Construction d'une bactérie génétiquement modifiée
- caractérisation des productions (rendements et cinétiques)
- Veille scientifique, PI et technologique

Environnement juridique et réglementaire des industries en biotechnologies (20 h)

- Introduction au contexte économique et industriel
- Cycle de vie des produits de santé
- Propriété industrielle

Gestion de projets et Outils d'aide à l'insertion professionnelle (60 h)

- Suivi et rendu de projet selon le principe de la gestion de projet
- Réalisation d'un projet en groupe

Stage en entreprise

- Stage minimum de 7 semaines en entreprise (rapport et soutenance)
- Ou : veille bibliographique sur application industrielle (rapport et soutenance)

LE MASTER 2

Optimisation de procédés de production (54 h)

- Optimisation globale des procédés de production (dimensionnement de procédés, analyse de cycle de vie, estimation de coûts)
- Optimisation des procédés de downstream process en biomédicaments
- Approche Process Analytical Technology & produits optimisés
- TP électrophorèse capillaire
- TP contrôle qualité biologique

Organisation, planification et suivi des essais (30 h)

- Organisation, planification et suivi de l'avancement des différentes étapes d'un projet de développement et d'optimisation
- Plans d'expérience
- Stratégies de maintenance en industrie

Management de la qualité/HSE/Gestion des risques (60 h)

- Contrôle de l'application des règles liées à la qualité, l'hygiène, la sécurité, la protection de l'environnement
- Gestion du risque
- Bonnes pratiques de fabrication (BPF)
- Qualification / Validation, ZAC
- Lean management

Réglementation des Biomédicaments (45 h)

- Les différentes institutions
- Référentiels
- Elaboration du dossier d'AMM
- Procédures d'enregistrement
- ICH Q8, Q9, Q10
- Cas des biosimilaires
- Médicaments de Thérapie Innovante

Management de projet (60 h)

- Management de projet : méthodologie, étapes, suivi, indicateurs, gestion de budget
- Animation de réunion
- · Les différents types de management

Projet étudiant (121 h)

- Réalisation d'un projet de développement autour de la production d'un bioproduit, de la preuve de concept au bioréacteur
- Etude de son potentiel d'industrialisation avec intégration des contraintes industrielles, réglementaires et de marché.
- Mise en application pratique du projet étudiant (preuve de concept, expériences de développement, validation à l'échelle bioréacteur)

Anglais (30 h)

Anglais scientifique

Apprentissage

- Le master 2 est proposé en apprentissage en collaboration avec le CFA Leem
- Rythme:

sept. à janv. : I mois / I mois fév. à août : en entreprise

